Search results for "metal chalcogenide"
showing 4 items of 4 documents
Fast-Response Single-Nanowire Photodetector Based on ZnO/WS 2 Core/Shell Heterostructures
2018
This work was supported by the Latvian National Research Program IMIS2 and ISSP project for Students and Young Researchers Nr. SJZ/2016/6. S.P. is grateful to the ERA.Net RUS Plus WATERSPLIT project no. 237 for the financial support. S.V. is grateful for partial support by the Estonian Science Foundation grant PUT1689.
Mismatch strain versus dangling bonds: formation of "coin-roll nanowires" by stacking nanosheets.
2010
CoS2/TiO2 Nanocomposites for Hydrogen Production under UV Irradiation
2019
Transition metal chalcogenides have intensively focused on photocatalytic hydrogen production for a decade due to their stronger edge and the quantum confinement effect. This work mainly focuses on synthesis and hydrogen production efficiencies of cobalt disulfide (CoS2)-embedded TiO2 nanocomposites. Materials are synthesized by using a hydrothermal approach and the hydrogen production efficiencies of pristine CoS2, TiO2 nanoparticles and CoS2/TiO2 nanocomposites are compared under UV irradiation. A higher amount of hydrogen production (2.55 mmol g&minus
From Single Molecules to Nanoscopically Structured Materials: Self-Assembly of Metal Chalcogenide/Metal Oxide Nanostructures Based on the Degree of P…
2011
A chemically specific and facile method for the immobilization of metal oxide nanoparticles onto the surface of IF-MoS2 nested fullerenes is reported. The modification strategy is based on the chalcophilic affinity of transition metals such as Fe2+/Fe3+, Fe3+, or Zn2+ as described by the Pearson HSAB concept. The binding capabilities of the 3d metals are dictated by their Pearson hardness. Pearson hard cations such as Fe3+ (Fe2O3) do not bind to the chalcogenide surfaces; borderline metals such as Fe2+ (Fe3O4) or Zn2+ (ZnO) bind reversibly. Pearson-soft metals like Au bind irreversibly. The immobilization of metal oxide nanoparticle colloids was monitored by transmission electron microscopy…