Search results for "metal chalcogenide"

showing 4 items of 4 documents

Fast-Response Single-Nanowire Photodetector Based on ZnO/WS 2 Core/Shell Heterostructures

2018

This work was supported by the Latvian National Research Program IMIS2 and ISSP project for Students and Young Researchers Nr. SJZ/2016/6. S.P. is grateful to the ERA.Net RUS Plus WATERSPLIT project no. 237 for the financial support. S.V. is grateful for partial support by the Estonian Science Foundation grant PUT1689.

Materials scienceNanostructureScanning electron microscopeNanowirePhotodetector02 engineering and technology010402 general chemistry01 natural sciences7. Clean energysymbols.namesake:NATURAL SCIENCES:Physics [Research Subject Categories]General Materials Sciencecore/shell nanowirestransitional metal chalcogenidesvan der Waals epitaxybusiness.industryHeterojunction021001 nanoscience & nanotechnology0104 chemical sciencesTransmission electron microscopy1D/1D heterostructuressymbolsphotodetectorsOptoelectronicsCharge carrier0210 nano-technologybusinessRaman spectroscopyACS Applied Materials & Interfaces
researchProduct

Mismatch strain versus dangling bonds: formation of "coin-roll nanowires" by stacking nanosheets.

2010

Materials scienceNanotubesStrain (chemistry)Metal chalcogenidesNanowiresInorganic chemistryNanowireDangling bondStackingGeneral ChemistryCatalysisCrystallographyTungsten sulfideMetal chalcogenides; Nanotubes; Nanowires; Niobium sulfide; Tungsten sulfideNiobium sulfideMetal chalcogenidesAngewandte Chemie (International ed. in English)
researchProduct

CoS2/TiO2 Nanocomposites for Hydrogen Production under UV Irradiation

2019

Transition metal chalcogenides have intensively focused on photocatalytic hydrogen production for a decade due to their stronger edge and the quantum confinement effect. This work mainly focuses on synthesis and hydrogen production efficiencies of cobalt disulfide (CoS2)-embedded TiO2 nanocomposites. Materials are synthesized by using a hydrothermal approach and the hydrogen production efficiencies of pristine CoS2, TiO2 nanoparticles and CoS2/TiO2 nanocomposites are compared under UV irradiation. A higher amount of hydrogen production (2.55 mmol g&minus

hydrothermalMaterials scienceHydrogenNanoparticlechemistry.chemical_element02 engineering and technology010402 general chemistry01 natural scienceswater splittingArticleTransition metalGeneral Materials Sciencetitaniatransition metal chalcogenidesHydrogen productionNanocompositeVDP::Teknologi: 500::Materialteknologi: 520::Funksjonelle materialer: 522021001 nanoscience & nanotechnology0104 chemical sciencesVDP::Teknologi: 500Chemical engineeringchemistryhydrogenPhotocatalysisWater splitting0210 nano-technologyCobaltMaterials
researchProduct

From Single Molecules to Nanoscopically Structured Materials: Self-Assembly of Metal Chalcogenide/Metal Oxide Nanostructures Based on the Degree of P…

2011

A chemically specific and facile method for the immobilization of metal oxide nanoparticles onto the surface of IF-MoS2 nested fullerenes is reported. The modification strategy is based on the chalcophilic affinity of transition metals such as Fe2+/Fe3+, Fe3+, or Zn2+ as described by the Pearson HSAB concept. The binding capabilities of the 3d metals are dictated by their Pearson hardness. Pearson hard cations such as Fe3+ (Fe2O3) do not bind to the chalcogenide surfaces; borderline metals such as Fe2+ (Fe3O4) or Zn2+ (ZnO) bind reversibly. Pearson-soft metals like Au bind irreversibly. The immobilization of metal oxide nanoparticle colloids was monitored by transmission electron microscopy…

inorganic chemicalslayered compound; metal chalcogenide; metal oxide; nanoparticle; reversible surface functionalizationMaterials scienceChalcogenidenanoparticleGeneral Chemical EngineeringInorganic chemistrylayered compoundOxideNanoparticleGeneral Chemistrymetal oxideMetalchemistry.chemical_compoundTransition metalchemistryTransmission electron microscopyvisual_artreversible surface functionalizationMaterials Chemistryvisual_art.visual_art_mediumHSAB theoryHigh-resolution transmission electron microscopymetal chalcogenideChemistry of Materials
researchProduct